Entrer un problème...
Algèbre linéaire Exemples
A=[102210240-25-38610105-3861010-542-6-10-7]A=⎡⎢
⎢
⎢
⎢
⎢
⎢⎣102210240−25−38610105−3861010−542−6−10−7⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
Étape 1
Nullity is the dimension of the null space, which is the same as the number of free variables in the system after row reducing. The free variables are the columns without pivot positions.
Étape 2
Étape 2.1
Perform the row operation R3=R3-5R1R3=R3−5R1 to make the entry at 3,13,1 a 00.
Étape 2.1.1
Perform the row operation R3=R3-5R1R3=R3−5R1 to make the entry at 3,13,1 a 00.
[102210240-25-5⋅1-38-5⋅06-5⋅210-5⋅210-5⋅15-3861010-542-6-10-7]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣102210240−25−5⋅1−38−5⋅06−5⋅210−5⋅210−5⋅15−3861010−542−6−10−7⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
Étape 2.1.2
Simplifiez R3R3.
[102210240-20-38-4055-3861010-542-6-10-7]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣102210240−20−38−4055−3861010−542−6−10−7⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
[102210240-20-38-4055-3861010-542-6-10-7]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣102210240−20−38−4055−3861010−542−6−10−7⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
Étape 2.2
Perform the row operation R4=R4-5R1R4=R4−5R1 to make the entry at 4,14,1 a 00.
Étape 2.2.1
Perform the row operation R4=R4-5R1R4=R4−5R1 to make the entry at 4,14,1 a 00.
[102210240-20-38-4055-5⋅1-38-5⋅06-5⋅210-5⋅210-5⋅1-542-6-10-7]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣102210240−20−38−4055−5⋅1−38−5⋅06−5⋅210−5⋅210−5⋅1−542−6−10−7⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
Étape 2.2.2
Simplifiez R4R4.
[102210240-20-38-4050-38-405-542-6-10-7]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣102210240−20−38−4050−38−405−542−6−10−7⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
[102210240-20-38-4050-38-405-542-6-10-7]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣102210240−20−38−4050−38−405−542−6−10−7⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
Étape 2.3
Perform the row operation R5=R5+5R1R5=R5+5R1 to make the entry at 5,15,1 a 00.
Étape 2.3.1
Perform the row operation R5=R5+5R1R5=R5+5R1 to make the entry at 5,15,1 a 00.
[102210240-20-38-4050-38-405-5+5⋅142+5⋅0-6+5⋅2-10+5⋅2-7+5⋅1]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣102210240−20−38−4050−38−405−5+5⋅142+5⋅0−6+5⋅2−10+5⋅2−7+5⋅1⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
Étape 2.3.2
Simplifiez R5R5.
[102210240-20-38-4050-38-40504240-2]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣102210240−20−38−4050−38−40504240−2⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
[102210240-20-38-4050-38-40504240-2]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣102210240−20−38−4050−38−40504240−2⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
Étape 2.4
Multiply each element of R2R2 by 1212 to make the entry at 2,22,2 a 11.
Étape 2.4.1
Multiply each element of R2R2 by 1212 to make the entry at 2,22,2 a 11.
[1022102224202-220-38-4050-38-40504240-2]⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣1022102224202−220−38−4050−38−40504240−2⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
Étape 2.4.2
Simplifiez R2R2.
[102210120-10-38-4050-38-40504240-2]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣102210120−10−38−4050−38−40504240−2⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
[102210120-10-38-4050-38-40504240-2]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣102210120−10−38−4050−38−40504240−2⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
Étape 2.5
Perform the row operation R3=R3+38R2R3=R3+38R2 to make the entry at 3,23,2 a 00.
Étape 2.5.1
Perform the row operation R3=R3+38R2R3=R3+38R2 to make the entry at 3,23,2 a 00.
[102210120-10+38⋅0-38+38⋅1-4+38⋅20+38⋅05+38⋅-10-38-40504240-2]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣102210120−10+38⋅0−38+38⋅1−4+38⋅20+38⋅05+38⋅−10−38−40504240−2⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
Étape 2.5.2
Simplifiez R3R3.
[102210120-100720-330-38-40504240-2]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣102210120−100720−330−38−40504240−2⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
[102210120-100720-330-38-40504240-2]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣102210120−100720−330−38−40504240−2⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
Étape 2.6
Perform the row operation R4=R4+38R2R4=R4+38R2 to make the entry at 4,24,2 a 00.
Étape 2.6.1
Perform the row operation R4=R4+38R2R4=R4+38R2 to make the entry at 4,24,2 a 00.
[102210120-100720-330+38⋅0-38+38⋅1-4+38⋅20+38⋅05+38⋅-104240-2]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣102210120−100720−330+38⋅0−38+38⋅1−4+38⋅20+38⋅05+38⋅−104240−2⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
Étape 2.6.2
Simplifiez R4R4.
[102210120-100720-3300720-3304240-2]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣102210120−100720−3300720−3304240−2⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
[102210120-100720-3300720-3304240-2]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣102210120−100720−3300720−3304240−2⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
Étape 2.7
Perform the row operation R5=R5-42R2R5=R5−42R2 to make the entry at 5,25,2 a 00.
Étape 2.7.1
Perform the row operation R5=R5-42R2R5=R5−42R2 to make the entry at 5,25,2 a 00.
[102210120-100720-3300720-330-42⋅042-42⋅14-42⋅20-42⋅0-2-42⋅-1]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣102210120−100720−3300720−330−42⋅042−42⋅14−42⋅20−42⋅0−2−42⋅−1⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
Étape 2.7.2
Simplifiez R5.
[102210120-100720-3300720-3300-80040]
[102210120-100720-3300720-3300-80040]
Étape 2.8
Multiply each element of R3 by 172 to make the entry at 3,3 a 1.
Étape 2.8.1
Multiply each element of R3 by 172 to make the entry at 3,3 a 1.
[102210120-10720727272072-337200720-3300-80040]
Étape 2.8.2
Simplifiez R3.
[102210120-10010-112400720-3300-80040]
[102210120-10010-112400720-3300-80040]
Étape 2.9
Perform the row operation R4=R4-72R3 to make the entry at 4,3 a 0.
Étape 2.9.1
Perform the row operation R4=R4-72R3 to make the entry at 4,3 a 0.
[102210120-10010-11240-72⋅00-72⋅072-72⋅10-72⋅0-33-72(-1124)00-80040]
Étape 2.9.2
Simplifiez R4.
[102210120-10010-11240000000-80040]
[102210120-10010-11240000000-80040]
Étape 2.10
Perform the row operation R5=R5+80R3 to make the entry at 5,3 a 0.
Étape 2.10.1
Perform the row operation R5=R5+80R3 to make the entry at 5,3 a 0.
[102210120-10010-1124000000+80⋅00+80⋅0-80+80⋅10+80⋅040+80(-1124)]
Étape 2.10.2
Simplifiez R5.
[102210120-10010-1124000000000103]
[102210120-10010-1124000000000103]
Étape 2.11
Swap R5 with R4 to put a nonzero entry at 4,5.
[102210120-10010-1124000010300000]
Étape 2.12
Multiply each element of R4 by 310 to make the entry at 4,5 a 1.
Étape 2.12.1
Multiply each element of R4 by 310 to make the entry at 4,5 a 1.
[102210120-10010-1124310⋅0310⋅0310⋅0310⋅0310⋅10300000]
Étape 2.12.2
Simplifiez R4.
[102210120-10010-11240000100000]
[102210120-10010-11240000100000]
Étape 2.13
Perform the row operation R3=R3+1124R4 to make the entry at 3,5 a 0.
Étape 2.13.1
Perform the row operation R3=R3+1124R4 to make the entry at 3,5 a 0.
[102210120-10+1124⋅00+1124⋅01+1124⋅00+1124⋅0-1124+1124⋅10000100000]
Étape 2.13.2
Simplifiez R3.
[102210120-1001000000100000]
[102210120-1001000000100000]
Étape 2.14
Perform the row operation R2=R2+R4 to make the entry at 2,5 a 0.
Étape 2.14.1
Perform the row operation R2=R2+R4 to make the entry at 2,5 a 0.
[102210+01+02+00+0-1+1⋅1001000000100000]
Étape 2.14.2
Simplifiez R2.
[1022101200001000000100000]
[1022101200001000000100000]
Étape 2.15
Perform the row operation R1=R1-R4 to make the entry at 1,5 a 0.
Étape 2.15.1
Perform the row operation R1=R1-R4 to make the entry at 1,5 a 0.
[1-00-02-02-01-101200001000000100000]
Étape 2.15.2
Simplifiez R1.
[1022001200001000000100000]
[1022001200001000000100000]
Étape 2.16
Perform the row operation R2=R2-2R3 to make the entry at 2,3 a 0.
Étape 2.16.1
Perform the row operation R2=R2-2R3 to make the entry at 2,3 a 0.
[102200-2⋅01-2⋅02-2⋅10-2⋅00-2⋅0001000000100000]
Étape 2.16.2
Simplifiez R2.
[1022001000001000000100000]
[1022001000001000000100000]
Étape 2.17
Perform the row operation R1=R1-2R3 to make the entry at 1,3 a 0.
Étape 2.17.1
Perform the row operation R1=R1-2R3 to make the entry at 1,3 a 0.
[1-2⋅00-2⋅02-2⋅12-2⋅00-2⋅001000001000000100000]
Étape 2.17.2
Simplifiez R1.
[1002001000001000000100000]
[1002001000001000000100000]
[1002001000001000000100000]
Étape 3
The pivot positions are the locations with the leading 1 in each row. The pivot columns are the columns that have a pivot position.
Pivot Positions: a11,a22,a33, and a45
Pivot Columns: 1,2,3, and 5
Étape 4
The nullity is the number of columns without a pivot position in the row reduced matrix.
1